Mathematics > Optimization and Control
[Submitted on 9 Oct 2022]
Title:Neural networks for first order HJB equations and application to front propagation with obstacle terms
View PDFAbstract:We consider a deterministic optimal control problem with a maximum running cost functional, in a finite horizon context, and propose deep neural network approximations for Bellman's dynamic programming principle, corresponding also to some first-order Hamilton-Jacobi-Bellman equations. This work follows the lines of Huré et al. (SIAM J. Numer. Anal., vol. 59 (1), 2021, pp. 525-557) where algorithms are proposed in a stochastic context. However, we need to develop a completely new approach in order to deal with the propagation of errors in the deterministic setting, where no diffusion is present in the dynamics. Our analysis gives precise error estimates in an average norm. The study is then illustrated on several academic numerical examples related to front propagations models in the presence of obstacle constraints, showing the relevance of the approach for average dimensions (e.g. from $2$ to $8$), even for non-smooth value functions.
Submission history
From: Olivier Bokanowski [view email][v1] Sun, 9 Oct 2022 16:43:39 UTC (24,103 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.