Mathematics > Optimization and Control
[Submitted on 10 Oct 2022]
Title:Online Resource Allocation with Samples
View PDFAbstract:We study an online resource allocation problem under uncertainty about demand and about the reward of each type of demand (agents) for the resource. Even though dealing with demand uncertainty in resource allocation problems has been the topic of many papers in the literature, the challenge of not knowing rewards has been barely explored. The lack of knowledge about agents' rewards is inspired by the problem of allocating units of a new resource (e.g., newly developed vaccines or drugs) with unknown effectiveness/value. For such settings, we assume that we can \emph{test} the market before the allocation period starts. During the test period, we sample each agent in the market with probability $p$. We study how to optimally exploit the \emph{sample information} in our online resource allocation problem under adversarial arrival processes. We present an asymptotically optimal algorithm that achieves $1-\Theta(1/(p\sqrt{m}))$ competitive ratio, where $m$ is the number of available units of the resource. By characterizing an upper bound on the competitive ratio of any randomized and deterministic algorithm, we show that our competitive ratio of $1-\Theta(1/(p\sqrt{m}))$ is tight for any $p =\omega(1/\sqrt{m})$. That asymptotic optimality is possible with sample information highlights the significant advantage of running a test period for new resources. We demonstrate the efficacy of our proposed algorithm using a dataset that contains the number of COVID-19 related hospitalized patients across different age groups.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.