Mathematics > Optimization and Control
[Submitted on 10 Oct 2022]
Title:Rieoptax: Riemannian Optimization in JAX
View PDFAbstract:We present Rieoptax, an open source Python library for Riemannian optimization in JAX. We show that many differential geometric primitives, such as Riemannian exponential and logarithm maps, are usually faster in Rieoptax than existing frameworks in Python, both on CPU and GPU. We support various range of basic and advanced stochastic optimization solvers like Riemannian stochastic gradient, stochastic variance reduction, and adaptive gradient methods. A distinguishing feature of the proposed toolbox is that we also support differentially private optimization on Riemannian manifolds.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.