Mathematics > Numerical Analysis
[Submitted on 10 Oct 2022 (v1), last revised 13 Jun 2023 (this version, v2)]
Title:A Monte Carlo Method for 3D Radiative Transfer Equations with Multifractional Singular Kernels
View PDFAbstract:We propose in this work a Monte Carlo method for three dimensional scalar radiative transfer equations with non-integrable, space-dependent scattering kernels. Such kernels typically account for long-range statistical features, and arise for instance in the context of wave propagation in turbulent atmosphere, geophysics, and medical imaging in the peaked-forward regime. In contrast to the classical case where the scattering cross section is integrable, which results in a non-zero mean free time, the latter here vanishes. This creates numerical difficulties as standard Monte Carlo methods based on a naive regularization exhibit large jump intensities and an increased computational cost. We propose a method inspired by the finance literature based on a small jumps - large jumps decomposition, allowing us to treat the small jumps efficiently and reduce the computational burden. We demonstrate the performance of the approach with numerical simulations and provide a complete error analysis. The multifractional terminology refers to the fact that the high frequency contribution of the scattering operator is a fractional Laplace-Beltrami operator on the unit sphere with space-dependent index.
Submission history
From: Christophe Gomez [view email][v1] Mon, 10 Oct 2022 18:50:57 UTC (2,548 KB)
[v2] Tue, 13 Jun 2023 14:12:10 UTC (2,551 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.