Mathematics > Algebraic Geometry
[Submitted on 10 Oct 2022 (v1), last revised 25 Jun 2024 (this version, v3)]
Title:A complete answer to Albanese base change for incomplete varieties
View PDF HTML (experimental)Abstract:Albanese varieties provide a standard tool in algebraic geometry for converting questions about varieties in general, to questions about Abelian varieties. A result of Serre provides the existence of an Albanese variety for any geometrically connected and geometrically reduced scheme of finite type over a field, and a result of Grothendieck--Conrad establishes that Albanese varieties are stable under base change of field provided the scheme is, in addition, proper. A result of Raynaud shows that base change can fail for Albanese varieties without this properness hypothesis. In this paper we show that Albanese varieties of geometrically connected and geometrically reduced schemes of finite type over a field are stable under separable field extensions. We also show that the failure of base change in general is explained by the L/K-image for purely inseparable extensions L/K.
Submission history
From: Charles Vial [view email][v1] Mon, 10 Oct 2022 21:19:43 UTC (31 KB)
[v2] Thu, 11 May 2023 14:17:36 UTC (35 KB)
[v3] Tue, 25 Jun 2024 07:39:04 UTC (35 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.