Computer Science > Machine Learning
[Submitted on 11 Oct 2022]
Title:Divergence Results and Convergence of a Variance Reduced Version of ADAM
View PDFAbstract:Stochastic optimization algorithms using exponential moving averages of the past gradients, such as ADAM, RMSProp and AdaGrad, have been having great successes in many applications, especially in training deep neural networks. ADAM in particular stands out as efficient and robust. Despite of its outstanding performance, ADAM has been proved to be divergent for some specific problems. We revisit the divergent question and provide divergent examples under stronger conditions such as in expectation or high probability. Under a variance reduction assumption, we show that an ADAM-type algorithm converges, which means that it is the variance of gradients that causes the divergence of original ADAM. To this end, we propose a variance reduced version of ADAM and provide a convergent analysis of the algorithm. Numerical experiments show that the proposed algorithm has as good performance as ADAM. Our work suggests a new direction for fixing the convergence issues.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.