Computer Science > Machine Learning
[Submitted on 12 Oct 2022]
Title:Travel the Same Path: A Novel TSP Solving Strategy
View PDFAbstract:In this paper, we provide a novel strategy for solving Traveling Salesman Problem, which is a famous combinatorial optimization problem studied intensely in the TCS community. In particular, we consider the imitation learning framework, which helps a deterministic algorithm making good choices whenever it needs to, resulting in a speed up while maintaining the exactness of the solution without suffering from the unpredictability and a potential large deviation.
Furthermore, we demonstrate a strong generalization ability of a graph neural network trained under the imitation learning framework. Specifically, the model is capable of solving a large instance of TSP faster than the baseline while has only seen small TSP instances when training.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.