Mathematics > Optimization and Control
[Submitted on 12 Oct 2022]
Title:Sparse PCA: a Geometric Approach
View PDFAbstract:We consider the problem of maximizing the variance explained from a data matrix using orthogonal sparse principal components that have a support of fixed cardinality. While most existing methods focus on building principal components (PCs) iteratively through deflation, we propose GeoSPCA, a novel algorithm to build all PCs at once while satisfying the orthogonality constraints which brings substantial benefits over deflation. This novel approach is based on the left eigenvalues of the covariance matrix which helps circumvent the non-convexity of the problem by approximating the optimal solution using a binary linear optimization problem that can find the optimal solution. The resulting approximation can be used to tackle different versions of the sparse PCA problem including the case in which the principal components share the same support or have disjoint supports and the Structured Sparse PCA problem. We also propose optimality bounds and illustrate the benefits of GeoSPCA in selected real world problems both in terms of explained variance, sparsity and tractability. Improvements vs. the greedy algorithm, which is often at par with state-of-the-art techniques, reaches up to 24% in terms of variance while solving real world problems with 10,000s of variables and support cardinality of 100s in minutes. We also apply GeoSPCA in a face recognition problem yielding more than 10% improvement vs. other PCA based technique such as structured sparse PCA.
Submission history
From: Driss Lahlou Kitane [view email][v1] Wed, 12 Oct 2022 21:10:38 UTC (7,723 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.