Mathematics > Optimization and Control
[Submitted on 13 Oct 2022]
Title:No Dimension-Free Deterministic Algorithm Computes Approximate Stationarities of Lipschitzians
View PDFAbstract:We consider the computation of an approximately stationary point for a Lipschitz and semialgebraic function $f$ with a local oracle. If $f$ is smooth, simple deterministic methods have dimension-free finite oracle complexities. For the general Lipschitz setting, only recently, Zhang et al. [47] introduced a randomized algorithm that computes Goldstein's approximate stationarity [25] to arbitrary precision with a dimension-free polynomial oracle complexity.
In this paper, we show that no deterministic algorithm can do the same. Even without the dimension-free requirement, we show that any finite time guaranteed deterministic method cannot be general zero-respecting, which rules out most of the oracle-based methods in smooth optimization and any trivial derandomization of Zhang et al. [47]. Our results reveal a fundamental hurdle of nonconvex nonsmooth problems in the modern large-scale setting and their infinite-dimensional extension.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.