Computer Science > Machine Learning
[Submitted on 16 Oct 2022 (v1), last revised 24 Dec 2023 (this version, v3)]
Title:Stability of Accuracy for the Training of DNNs Via the Uniform Doubling Condition
View PDF HTML (experimental)Abstract:We study the stability of accuracy during the training of deep neural networks (DNNs). In this context, the training of a DNN is performed via the minimization of a cross-entropy loss function, and the performance metric is accuracy (the proportion of objects that are classified correctly). While training results in a decrease of loss, the accuracy does not necessarily increase during the process and may sometimes even decrease. The goal of achieving stability of accuracy is to ensure that if accuracy is high at some initial time, it remains high throughout training.
A recent result by Berlyand, Jabin, and Safsten introduces a doubling condition on the training data, which ensures the stability of accuracy during training for DNNs using the absolute value activation function. For training data in $\mathbb{R}^n$, this doubling condition is formulated using slabs in $\mathbb{R}^n$ and depends on the choice of the slabs. The goal of this paper is twofold. First, to make the doubling condition uniform, that is, independent of the choice of slabs. This leads to sufficient conditions for stability in terms of training data only. In other words, for a training set $T$ that satisfies the uniform doubling condition, there exists a family of DNNs such that a DNN from this family with high accuracy on the training set at some training time $t_0$ will have high accuracy for all time $t>t_0$. Moreover, establishing uniformity is necessary for the numerical implementation of the doubling condition.
The second goal is to extend the original stability results from the absolute value activation function to a broader class of piecewise linear activation functions with finitely many critical points, such as the popular Leaky ReLU.
Submission history
From: Yitzchak Shmalo [view email][v1] Sun, 16 Oct 2022 02:42:42 UTC (668 KB)
[v2] Thu, 27 Apr 2023 21:14:43 UTC (12,879 KB)
[v3] Sun, 24 Dec 2023 23:50:55 UTC (6,064 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.