Mathematics > Optimization and Control
[Submitted on 17 Oct 2022]
Title:Model Predictive Control via On-Policy Imitation Learning
View PDFAbstract:In this paper, we leverage the rapid advances in imitation learning, a topic of intense recent focus in the Reinforcement Learning (RL) literature, to develop new sample complexity results and performance guarantees for data-driven Model Predictive Control (MPC) for constrained linear systems. In its simplest form, imitation learning is an approach that tries to learn an expert policy by querying samples from an expert. Recent approaches to data-driven MPC have used the simplest form of imitation learning known as behavior cloning to learn controllers that mimic the performance of MPC by online sampling of the trajectories of the closed-loop MPC system. Behavior cloning, however, is a method that is known to be data inefficient and suffer from distribution shifts. As an alternative, we develop a variant of the forward training algorithm which is an on-policy imitation learning method proposed by Ross et al. (2010). Our algorithm uses the structure of constrained linear MPC, and our analysis uses the properties of the explicit MPC solution to theoretically bound the number of online MPC trajectories needed to achieve optimal performance. We validate our results through simulations and show that the forward training algorithm is indeed superior to behavior cloning when applied to MPC.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.