Mathematics > Optimization and Control
[Submitted on 18 Oct 2022 (v1), last revised 24 Apr 2024 (this version, v5)]
Title:Input Regularization for Integer Optimal Control in BV with Applications to Control of Poroelastic and Poroviscoelastic Systems
View PDFAbstract:We revisit a class of integer optimal control problems for which a trust-region method has been proposed and analyzed in arXiv:2106.13453v3 [math.OC]. While the algorithm proposed in arXiv:2106.13453v3 [math.OC] successfully solves the class of optimization problems under consideration, its convergence analysis requires restrictive regularity assumptions. There are many examples of integer optimal control problems involving partial differential equations where these regularity assumptions are not satisfied. In this article we provide a way to bypass the restrictive regularity assumptions by introducing an additional partial regularization of the control inputs by means of mollification and proving a $\Gamma$-convergence-type result when the support parameter of the mollification is driven to zero. We highlight the applicability of this theory in the case of fluid flows through deformable porous media equations that arise in biomechanics. We show that the regularity assumptions are violated in the case of poro-visco-elastic systems, and thus one needs to use the regularization of the control input introduced in this article. Associated numerical results show that while the homotopy can help to find better objective values and points of lower instationarity, the practical performance of the algorithm without the input regularization may be on par with the homotopy.
Submission history
From: Sarah Strikwerda [view email][v1] Tue, 18 Oct 2022 03:42:38 UTC (97 KB)
[v2] Tue, 20 Dec 2022 18:13:52 UTC (571 KB)
[v3] Sun, 1 Oct 2023 21:20:12 UTC (592 KB)
[v4] Sat, 13 Jan 2024 02:34:31 UTC (113 KB)
[v5] Wed, 24 Apr 2024 16:48:48 UTC (113 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.