Mathematics > Number Theory
[Submitted on 19 Oct 2022 (v1), last revised 8 Dec 2022 (this version, v2)]
Title:Diophantine approximation with constraints
View PDFAbstract:Following Schmidt, Thurnheer and Bugeaud-Kristensen, we study how Dirichlet's theorem on linear forms needs to be modified when one requires that the vectors of coefficients of the linear forms make a bounded acute angle with respect to a fixed proper non-zero subspace $V$ of $\mathbb{R}^n$. Assuming that the point of $\mathbb{R}^n$ that we are approximating has linearly independent coordinates over $\mathbb{Q}$, we obtain best possible exponents of approximation which surprisingly depend only on the dimension of $V$. Our estimates are derived by reduction to a result of Thurnheer, while their optimality follows from a new general construction in parametric geometry of numbers involving angular constraints.
Submission history
From: Damien Roy [view email][v1] Wed, 19 Oct 2022 12:20:32 UTC (36 KB)
[v2] Thu, 8 Dec 2022 18:30:35 UTC (36 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.