Mathematics > Optimization and Control
[Submitted on 19 Oct 2022]
Title:Weak and strong convergence of an inertial proximal method for solving bilevel monotone equilibrium problems
View PDFAbstract:In this paper, we introduce an inertial proximal method for solving a bilevel problem involving two monotone equilibrium bifunctions in Hilbert spaces. Under suitable conditions and without any restrictive assumption on the trajectories, the weak and strong convergence of the sequence generated by the iterative method are established. Two particular cases illustrating the proposed method are thereafter discussed with respect to hierarchical minimization problems and equilibrium problems under saddle point constraint. Furthermore, a numerical example is given to demonstrate the implementability of our algorithm. The algorithm and its convergence results improve and develop previous results in the field.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.