Computer Science > Machine Learning
[Submitted on 22 Oct 2022 (v1), last revised 19 Jul 2023 (this version, v2)]
Title:SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems
View PDFAbstract:Optimization problems with nonlinear cost functions and combinatorial constraints appear in many real-world applications but remain challenging to solve efficiently compared to their linear counterparts. To bridge this gap, we propose $\textbf{SurCo}$ that learns linear $\underline{\text{Sur}}$rogate costs which can be used in existing $\underline{\text{Co}}$mbinatorial solvers to output good solutions to the original nonlinear combinatorial optimization problem. The surrogate costs are learned end-to-end with nonlinear loss by differentiating through the linear surrogate solver, combining the flexibility of gradient-based methods with the structure of linear combinatorial optimization. We propose three $\texttt{SurCo}$ variants: $\texttt{SurCo}-\texttt{zero}$ for individual nonlinear problems, $\texttt{SurCo}-\texttt{prior}$ for problem distributions, and $\texttt{SurCo}-\texttt{hybrid}$ to combine both distribution and problem-specific information. We give theoretical intuition motivating $\texttt{SurCo}$, and evaluate it empirically. Experiments show that $\texttt{SurCo}$ finds better solutions faster than state-of-the-art and domain expert approaches in real-world optimization problems such as embedding table sharding, inverse photonic design, and nonlinear route planning.
Submission history
From: Aaron Ferber [view email][v1] Sat, 22 Oct 2022 20:42:06 UTC (621 KB)
[v2] Wed, 19 Jul 2023 16:16:50 UTC (1,837 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.