Computer Science > Information Theory
[Submitted on 23 Oct 2022 (v1), last revised 26 May 2023 (this version, v2)]
Title:Achievable Error Exponents for Two-Phase Multiple Classification
View PDFAbstract:We revisit $M$-ary classification of Gutman (TIT 1989), where one is tasked to determine whether a testing sequence is generated with the same distribution as one of the $M$ training sequences or not. Our main result is a two-phase test, its theoretical analysis and its optimality guarantee. Specifically, our two-phase test is a special case of a sequential test with only two decision time points: the first phase of our test is a fixed-length test with a reject option, the second-phase of our test proceeds only if a reject option is decided in the first phase and the second phase of our test does \emph{not} allow a reject option. To provide theoretical guarantee for our test, we derive achievable error exponents using the method of types and derive a converse result for the optimal sequential test using the techniques recently proposed by Hsu, Li and Wang (ITW, 2022) for binary classification. Analytically and numerically, we show that our two phase test achieves the performance of an optimal sequential test with proper choice of test parameters. In particular, similarly as the optimal sequential test, our test does not need a final reject option to achieve the optimal error exponent region while an optimal fixed-length test needs a reject option to achieve the same region. Finally, we specialize our results to binary classification when $M=2$ and to $M$-ary hypothesis testing when the ratio of the lengths of training sequences and testing sequences tends to infinity so that generating distributions can be estimated perfectly.
Submission history
From: Lin Zhou [view email][v1] Sun, 23 Oct 2022 14:22:10 UTC (485 KB)
[v2] Fri, 26 May 2023 05:49:01 UTC (447 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.