Mathematics > Combinatorics
[Submitted on 23 Oct 2022 (v1), last revised 10 Apr 2024 (this version, v3)]
Title:Expander graphs are globally synchronizing
View PDFAbstract:The Kuramoto model is fundamental to the study of synchronization. It consists of a collection of oscillators with interactions given by a network, which we identify respectively with vertices and edges of a graph. In this paper, we show that a graph with sufficient expansion must be globally synchronizing, meaning that a homogeneous Kuramoto model of identical oscillators on such a graph will converge to the fully synchronized state with all the oscillators having the same phase, for every initial state up to a set of measure zero. In particular, we show that for any $\varepsilon > 0$ and $p \geq (1 + \varepsilon) (\log n) / n$, the homogeneous Kuramoto model on the Erdős-Rényi random graph $G(n, p)$ is globally synchronizing with probability tending to one as $n$ goes to infinity. This improves on a previous result of Kassabov, Strogatz, and Townsend and solves a conjecture of Ling, Xu, and Bandeira. We also show that the model is globally synchronizing on any $d$-regular Ramanujan graph, and on typical $d$-regular graphs, for large enough degree $d$.
Submission history
From: Victor Souza [view email][v1] Sun, 23 Oct 2022 17:09:42 UTC (36 KB)
[v2] Wed, 15 Nov 2023 22:59:50 UTC (40 KB)
[v3] Wed, 10 Apr 2024 08:23:17 UTC (42 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.