Computer Science > Machine Learning
[Submitted on 24 Oct 2022 (v1), last revised 11 Sep 2023 (this version, v2)]
Title:Adaptive Top-K in SGD for Communication-Efficient Distributed Learning
View PDFAbstract:Distributed stochastic gradient descent (SGD) with gradient compression has become a popular communication-efficient solution for accelerating distributed learning. One commonly used method for gradient compression is Top-K sparsification, which sparsifies the gradients by a fixed degree during model training. However, there has been a lack of an adaptive approach to adjust the sparsification degree to maximize the potential of the model's performance or training speed. This paper proposes a novel adaptive Top-K in SGD framework that enables an adaptive degree of sparsification for each gradient descent step to optimize the convergence performance by balancing the trade-off between communication cost and convergence error. Firstly, an upper bound of convergence error is derived for the adaptive sparsification scheme and the loss function. Secondly, an algorithm is designed to minimize the convergence error under the communication cost constraints. Finally, numerical results on the MNIST and CIFAR-10 datasets demonstrate that the proposed adaptive Top-K algorithm in SGD achieves a significantly better convergence rate compared to state-of-the-art methods, even after considering error compensation.
Submission history
From: Mengzhe Ruan [view email][v1] Mon, 24 Oct 2022 18:33:35 UTC (66 KB)
[v2] Mon, 11 Sep 2023 14:37:33 UTC (229 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.