Electrical Engineering and Systems Science > Systems and Control
[Submitted on 26 Oct 2022 (v1), last revised 12 Feb 2024 (this version, v3)]
Title:Tracking-based distributed equilibrium seeking for aggregative games
View PDFAbstract:We propose fully-distributed algorithms for Nash equilibrium seeking in aggregative games over networks. We first consider the case where local constraints are present and we design an algorithm combining, for each agent, (i) the projected pseudo-gradient descent and (ii) a tracking mechanism to locally reconstruct the aggregative variable. To handle coupling constraints arising in generalized settings, we propose another distributed algorithm based on (i) a recently emerged augmented primal-dual scheme and (ii) two tracking mechanisms to reconstruct, for each agent, both the aggregative variable and the coupling constraint satisfaction. Leveraging tools from singular perturbations analysis, we prove linear convergence to the Nash equilibrium for both schemes. Finally, we run extensive numerical simulations to confirm the effectiveness of our methods and compare them with state-of-the-art distributed equilibrium-seeking algorithms.
Submission history
From: Guido Carnevale [view email][v1] Wed, 26 Oct 2022 08:08:01 UTC (302 KB)
[v2] Fri, 29 Sep 2023 08:44:57 UTC (314 KB)
[v3] Mon, 12 Feb 2024 10:10:46 UTC (430 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.