Mathematics > Optimization and Control
[Submitted on 26 Oct 2022]
Title:Inapproximability of shortest paths on perfect matching polytopes
View PDFAbstract:We consider the computational problem of finding short paths in the skeleton of the perfect matching polytope of a bipartite graph. We prove that unless $P=NP$, there is no polynomial-time algorithm that computes a path of constant length between two vertices at distance two of the perfect matching polytope of a bipartite graph. Conditioned on $P\neq NP$, this disproves a conjecture by Ito, Kakimura, Kamiyama, Kobayashi and Okamoto [SIAM Journal on Discrete Mathematics, 36(2), pp. 1102-1123 (2022)]. Assuming the Exponential Time Hypothesis we prove the stronger result that there exists no polynomial-time algorithm computing a path of length at most $\left(\frac{1}{4}-o(1)\right)\frac{\log N}{\log \log N}$ between two vertices at distance two of the perfect matching polytope of an $N$-vertex bipartite graph. These results remain true if the bipartite graph is restricted to be of maximum degree three. The above has the following interesting implication for the performance of pivot rules for the simplex algorithm on simply-structured combinatorial polytopes: If $P\neq NP$, then for every simplex pivot rule executable in polynomial time and every constant $k \in \mathbb{N}$ there exists a linear program on a perfect matching polytope and a starting vertex of the polytope such that the optimal solution can be reached in two monotone steps from the starting vertex, yet the pivot rule will require at least $k$ steps to reach the optimal solution. This result remains true in the more general setting of pivot rules for so-called circuit-augmentation algorithms.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.