Mathematics > Optimization and Control
[Submitted on 30 Oct 2022]
Title:Personalized Dose Guidance using Safe Bayesian Optimization
View PDFAbstract:This work considers the problem of personalized dose guidance using Bayesian optimization that learns the optimum drug dose tailored to each individual, thus improving therapeutic outcomes. Safe learning using interior point method ensures patient safety with high probability. This is demonstrated using the problem of learning the optimum bolus insulin dose in patients with type 1 diabetes to counteract the effect of meal consumption. Starting from no a priori information about the patients, our dose guidance algorithm is able to improve the therapeutic outcome (measured in terms of % time-in-range) without jeopardizing patient safety. Other potential healthcare applications are also discussed.
Submission history
From: Dinesh Krishnamoorthy [view email][v1] Sun, 30 Oct 2022 20:40:15 UTC (17,953 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.