Computer Science > Machine Learning
[Submitted on 1 Nov 2022]
Title:Beyond the Best: Estimating Distribution Functionals in Infinite-Armed Bandits
View PDFAbstract:In the infinite-armed bandit problem, each arm's average reward is sampled from an unknown distribution, and each arm can be sampled further to obtain noisy estimates of the average reward of that arm. Prior work focuses on identifying the best arm, i.e., estimating the maximum of the average reward distribution. We consider a general class of distribution functionals beyond the maximum, and propose unified meta algorithms for both the offline and online settings, achieving optimal sample complexities. We show that online estimation, where the learner can sequentially choose whether to sample a new or existing arm, offers no advantage over the offline setting for estimating the mean functional, but significantly reduces the sample complexity for other functionals such as the median, maximum, and trimmed mean. The matching lower bounds utilize several different Wasserstein distances. For the special case of median estimation, we identify a curious thresholding phenomenon on the indistinguishability between Gaussian convolutions with respect to the noise level, which may be of independent interest.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.