Mathematics > History and Overview
[Submitted on 6 Nov 2022]
Title:Can probability theory really help tame problems in mathematical hydrodynamics?
View PDFAbstract:Recent years have seen spectacular progress in the mathematical study of hydrodynamic equations. Novel tools from convex integration in particular prove extremely versatile in establishing non-uniqueness results. Motivated by this 'pathological' behavior of solutions in the deterministic setting, stochastic models of fluid dynamics have enjoyed growing interest from the mathematical community. Inspired by the theory of 'regularization by noise', it is hoped for that stochasticity might help avoid 'pathologies' such as non-uniqueness of weak solutions. Current research however shows that convex integration methods can prevail even in spite of random perturbations.
Current browse context:
math.HO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.