Mathematics > Algebraic Geometry
[Submitted on 14 Nov 2022]
Title:A Generalized Muirhead Inequality and Symmetric Sums of Nonnegative Circuits
View PDFAbstract:Circuit polynomials are a certificate of nonnegativity for real polynomials, which can be derived via a generalization of the classical inequality of arithmetic and geometric means. In this article, we show that similarly nonnegativity of symmetric real polynomials can be certified via a generalization of the classical Muirhead inequality. Moreover, we show that a nonnegative symmetric polynomial admits a decomposition into sums of nonnegative circuit polynomials if and only if it satisfies said generalized Muirhead condition. The latter re-proves a result by Moustrou, Naumann, Riener, Theobald, and Verdure for the case of the symmetric group in a shortened and more elementary way.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.