Mathematics > Operator Algebras
[Submitted on 21 Nov 2022 (v1), last revised 26 Dec 2023 (this version, v2)]
Title:Manifolds of Lie-Group-Valued Cocycles and Discrete Cohomology
View PDF HTML (experimental)Abstract:Consider a compact group $G$ acting on a real or complex Banach Lie group $U$, by automorphisms in the relevant category, and leaving a central subgroup $K\le U$ invariant. We define the spaces ${}_KZ^n(G,U)$ of $K$-relative continuous cocycles as those maps ${G^n\to U}$ whose coboundary is a $K$-valued $(n+1)$-cocycle; this applies to possibly non-abelian $U$, in which case $n=1$. We show that the ${}_KZ^n(G,U)$ are analytic submanifolds of the spaces $C(G^n,U)$ of continuous maps $G^n\to U$ and that they decompose as disjoint unions of fiber bundles over manifolds of $K$-valued cocycles. Applications include: (a) the fact that ${Z^n(G,U)\subset C(G^n,U)}$ is an analytic submanifold and its orbits under the adjoint of the group of $U$-valued $(n-1)$-cochains are open; (b) hence the cohomology spaces $H^n(G,U)$ are discrete; (c) for unital $C^*$-algebras $A$ and $B$ with $A$ finite-dimensional the space of morphisms $A\to B$ is an analytic manifold and nearby morphisms are conjugate under the unitary group $U(B)$; (d) the same goes for $A$ and $B$ Banach, with $A$ finite-dimensional and semisimple; (e) and for spaces of projective representations of compact groups in arbitrary $C^*$ algebras (the last recovering a result of Martin's).
Submission history
From: Alexandru ChirvÄsitu L. [view email][v1] Mon, 21 Nov 2022 13:15:00 UTC (32 KB)
[v2] Tue, 26 Dec 2023 11:53:04 UTC (34 KB)
Current browse context:
math.OA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.