Mathematics > Optimization and Control
[Submitted on 22 Nov 2022 (v1), last revised 25 Apr 2023 (this version, v2)]
Title:Direct Collocation for Numerical Optimal Control of Second-Order ODE
View PDFAbstract:Mechanical systems are usually modeled by second-order Ordinary Differential Equations (ODE) which take the form $\ddot{q} = f(t, q, \dot{q})$. While simulation methods tailored to these equations have been studied, using them in direct optimal control methods is rare. Indeed, the standard approach is to perform a state augmentation, adding the velocities to the state. The main drawback of this approach is that the number of decision variables is doubled, which could harm the performance of the resulting optimization problem. In this paper, we present an approach tailored to second-order ODE. We compare it with the standard one, both on theoretical aspects and in a numerical example. Notably, we show that the tailored formulation is likely to improve the performance of a direct collocation method, for solving optimal control problems with second-order ODE of the more restrictive form $\ddot{q} = f(t, q)$.
Submission history
From: Léo Simpson [view email][v1] Tue, 22 Nov 2022 14:48:49 UTC (2,387 KB)
[v2] Tue, 25 Apr 2023 11:55:29 UTC (560 KB)
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.