Mathematics > General Topology
[Submitted on 22 Nov 2022 (v1), last revised 18 Mar 2023 (this version, v2)]
Title:Continuous R-valuations
View PDFAbstract:We introduce continuous $R$-valuations on directed-complete posets (dcpos, for short), as a generalization of continuous valuations in domain theory, by extending values of continuous valuations from reals to so-called Abelian d-rags $R$.
Like the valuation monad $\mathbf{V}$ introduced by Jones and Plotkin, we show that the construction of continuous $R$-valuations extends to a strong monad $\mathbf{V}^R$ on the category of dcpos and Scott-continuous maps. Additionally, and as in recent work by the two authors and C. Théron, and by the second author, B. Lindenhovius, M. Mislove and V. Zamdzhiev, we show that we can extract a commutative monad $\mathbf{V}^R_m$ out of it, whose elements we call minimal $R$-valuations.
We also show that continuous $R$-valuations have close connections to measures when $R$ is taken to be $\mathbf{I}\mathbb{R}^\star_+$, the interval domain of the extended nonnegative reals: (1) On every coherent topological space, every non-zero, bounded $\tau$-smooth measure $\mu$ (defined on the Borel $\sigma$-algebra), canonically determines a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation; and (2) such a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation is the most precise (in a certain sense) continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation that approximates $\mu$, when the support of $\mu$ is a compact Hausdorff subspace of a second-countable stably compact topological space. This in particular applies to Lebesgue measure on the unit interval. As a result, the Lebesgue measure can be identified as a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation. Additionally, we show that the latter is minimal.
Submission history
From: Michael Mislove [view email][v1] Tue, 22 Nov 2022 16:39:17 UTC (49 KB)
[v2] Sat, 18 Mar 2023 15:41:10 UTC (433 KB)
Current browse context:
math.GN
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.