Mathematics > Statistics Theory
[Submitted on 1 Dec 2022]
Title:Testing linearity in semi-functional partially linear regression models
View PDFAbstract:This paper proposes a Kolmogorov-Smirnov type statistic and a Cramér-von Mises type statistic to test linearity in semi-functional partially linear regression models. Our test statistics are based on a residual marked empirical process indexed by a randomly projected functional covariate,which is able to circumvent the "curse of dimensionality" brought by the functional covariate. The asymptotic properties of the proposed test statistics under the null, the fixed alternative, and a sequence of local alternatives converging to the null at the $n^{1/2}$ rate are established. A straightforward wild bootstrap procedure is suggested to estimate the critical values that are required to carry out the tests in practical applications. Results from an extensive simulation study show that our tests perform reasonably well in finite this http URL, we apply our tests to the Tecator and AEMET datasets to check whether the assumption of linearity is supported by these datasets.
Current browse context:
math.ST
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.