Mathematics > Combinatorics
[Submitted on 1 Dec 2022 (v1), last revised 5 May 2023 (this version, v2)]
Title:Dimension-Free Bounds for the Union-Closed Sets Conjecture
View PDFAbstract:The union-closed sets conjecture states that in any nonempty union-closed family $\mathcal{F}$ of subsets of a finite set, there exists an element contained in at least a proportion $1/2$ of the sets of $\mathcal{F}$. Using the information-theoretic method, Gilmer \cite{gilmer2022constant} recently showed that there exists an element contained in at least a proportion $0.01$ of the sets of such $\mathcal{F}$. He conjectured that his technique can be pushed to the constant $\frac{3-\sqrt{5}}{2}$ which was subsequently confirmed by several researchers \cite{sawin2022improved,chase2022approximate,alweiss2022improved,pebody2022extension}. Furthermore, Sawin \cite{sawin2022improved} showed that Gilmer's technique can be improved to obtain a bound better than $\frac{3-\sqrt{5}}{2}$, but this new bound is not explicitly given by Sawin. This paper further improves Gilmer's technique to derive new bounds in the optimization form for the union-closed sets conjecture. These bounds include Sawin's improvement as a special case. By providing cardinality bounds on auxiliary random variables, we make Sawin's improvement computable, and then evaluate it numerically which yields a bound around $0.38234$, slightly better than $\frac{3-\sqrt{5}}{2}\approx0.38197$. }
Submission history
From: Lei Yu [view email][v1] Thu, 1 Dec 2022 17:02:58 UTC (15 KB)
[v2] Fri, 5 May 2023 10:17:15 UTC (154 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.