Mathematics > Representation Theory
[Submitted on 1 Dec 2022 (v1), last revised 30 Jun 2023 (this version, v2)]
Title:Analytic, Differentiable and Measurable Diagonalizations in Symmetric Lie Algebras
View PDFAbstract:We generalize several important results from the perturbation theory of linear operators to the setting of semisimple orthogonal symmetric Lie algebras. These Lie algebras provide a unifying framework for various notions of matrix diagonalization, such as the eigenvalue decomposition of real symmetric or complex Hermitian matrices, and the real or complex singular value decomposition. Concretely, given a path of structured matrices with a certain smoothness, we study what kind of smoothness one can obtain for the corresponding diagonalization of the matrices.
Submission history
From: Emanuel Malvetti [view email][v1] Thu, 1 Dec 2022 18:15:43 UTC (182 KB)
[v2] Fri, 30 Jun 2023 19:17:05 UTC (182 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.