Mathematics > Rings and Algebras
[Submitted on 4 Dec 2022 (v1), last revised 7 Jun 2023 (this version, v2)]
Title:On the class of matrices with rows that weakly decrease cyclicly from the diagonal
View PDFAbstract:We consider $n\times n$ real-valued matrices $A = (a_{ij})$ satisfying $a_{ii} \geq a_{i,i+1} \geq \dots \geq a_{in} \geq a_{i1} \geq \dots \geq a_{i,i-1}$ for $i = 1,\dots,n$. With such a matrix $A$ we associate a directed graph $G(A)$. We prove that the solutions to the system $A^T x = \lambda e$, with $\lambda \in \mathbb{R}$ and $e$ the vector of all ones, are linear combinations of 'fundamental' solutions to $A^T x=e$ and vectors in $\ker A^T$, each of which is associated with a closed strongly connected component (SCC) of $G(A)$. This allows us to characterize the sign of $\det A$ in terms of the number of closed SCCs and the solutions to $A^T x = e$. In addition, we provide conditions for $A$ to be a $P$-matrix.
Submission history
From: Wouter Kager [view email][v1] Sun, 4 Dec 2022 10:40:19 UTC (22 KB)
[v2] Wed, 7 Jun 2023 07:27:10 UTC (25 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.