Mathematics > Optimization and Control
[Submitted on 18 Dec 2022]
Title:Exponential decay of solutions of damped wave equations in one dimensional space in the $L^p$ framework for various boundary conditions
View PDFAbstract:We establish the decay of the solutions of the damped wave equations in one dimensional space for the Dirichlet, Neumann, and dynamic boundary conditions where the damping coefficient is a function of space and time. The analysis is based on the study of the corresponding hyperbolic systems associated with the Riemann invariants. The key ingredient in the study of these systems is the use of the internal dissipation energy to estimate the difference of solutions with their mean values in an average sense.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.