Computer Science > Information Theory
[Submitted on 19 Dec 2022]
Title:On Non-Interactive Source Simulation via Fourier Transform
View PDFAbstract:The non-interactive source simulation (NISS) scenario is considered. In this scenario, a pair of distributed agents, Alice and Bob, observe a distributed binary memoryless source $(X^d,Y^d)$ generated based on joint distribution $P_{X,Y}$. The agents wish to produce a pair of discrete random variables $(U_d,V_d)$ with joint distribution $P_{U_d,V_d}$, such that $P_{U_d,V_d}$ converges in total variation distance to a target distribution $Q_{U,V}$ as the input blocklength $d$ is taken to be asymptotically large. Inner and outer bounds are obtained on the set of distributions $Q_{U,V}$ which can be produced given an input distribution $P_{X,Y}$. To this end, a bijective mapping from the set of distributions $Q_{U,V}$ to a union of star-convex sets is provided. By leveraging proof techniques from discrete Fourier analysis along with a novel randomized rounding technique, inner and outer bounds are derived for each of these star-convex sets, and by inverting the aforementioned bijective mapping, necessary and sufficient conditions on $Q_{U,V}$ and $P_{X,Y}$ are provided under which $Q_{U,V}$ can be produced from $P_{X,Y}$. The bounds are applicable in NISS scenarios where the output alphabets $\mathcal{U}$ and $\mathcal{V}$ have arbitrary finite size. In case of binary output alphabets, the outer-bound recovers the previously best-known outer-bound.
Submission history
From: Farhad Shirani Chaharsooghi [view email][v1] Mon, 19 Dec 2022 04:25:49 UTC (264 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.