Mathematics > Analysis of PDEs
[Submitted on 19 Dec 2022]
Title:Evolution of the radius of analyticity for the generalized Benjamin equation
View PDFAbstract:In this work we consider the initial value problem for the generalized Benjamin equation
\begin{equation}\label{Benj-IVP} \begin{cases} \partial_t u-l\mathcal{H} \partial_x^2u-\partial_x^3u+u^p\partial_xu = 0, \quad x,\; t\in \mathbb{R};\;\;,\; p\geq 1, \\ u(x,0) = u_0(x), \end{cases} \end{equation} where $u=u(x,t)$ is a real valued function, $0<l<1$ and $\mathcal{H}$ is the Hilbert transform. This model was introduced by T. B. Benjamin (J. Fluid Mech. 245 (1992) 401--411) and describes unidirectional propagation of long waves in a two-fluid system where the lower fluid with greater density is infinitely deep and the interface is subject to capillarity.
We prove that the local solution to the IVP associated with the generalized Benjamin equation for given data in the spaces of functions analytic on a strip around the real axis continue to be analytic without shrinking the width of the strip in time. We also study the evolution in time of the radius of spatial analyticity and show that it can decrease as the time advances. Finally, we present an algebraic lower bound on the possible rate of decrease in time of the uniform radius of spatial analyticity.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.