Computer Science > Information Theory
[Submitted on 23 Dec 2022]
Title:A Universal Random Coding Ensemble for Sample-wise Lossy Compression
View PDFAbstract:We propose a universal ensemble for random selection of rate-distortion codes, which is asymptotically optimal in a sample-wise sense. According to this ensemble, each reproduction vector, $\hbx$, is selected independently at random under the probability distribution that is proportional to $2^{-LZ(\hbx)}$, where $LZ(\hbx)$ is the code-length of $\hbx$ pertaining to the 1978 version of the Lempel-Ziv (LZ) algorithm. We show that, with high probability, the resulting codebook gives rise to an asymptotically optimal variable-rate lossy compression scheme under an arbitrary distortion measure, in the sense that a matching converse theorem also holds. According to the converse theorem, even if the decoder knew $\ell$-th order type of source vector in advance ($\ell$ being a large but fixed positive integer), the performance of the above-mentioned code could not have been improved essentially, for the vast majority of codewords that represent all source vectors in the same type. Finally, we provide a discussion of our results, which includes, among other things, a comparison to a coding scheme that selects the reproduction vector with the shortest LZ code length among all vectors that are within the allowed distortion from the source vector.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.