High Energy Physics - Phenomenology
[Submitted on 5 Apr 2023 (v1), last revised 11 Nov 2023 (this version, v2)]
Title:Towards the optimal beam dump experiment to search for feebly interacting particles
View PDFAbstract:Future searches for new physics beyond the Standard Model are without doubt in need of a diverse approach and experiments with complementary sensitivities to different types of classes of models. One of the directions that should be explored is feebly interacting particles (FIPs) with masses below the electroweak scale. The interest in FIPs has significantly increased in the last ten years. Searches for FIPs at colliders have intrinsic limitations in the region they may probe, significantly restricting exploration of the mass range $m_{\text{FIP}} < 5-10$\,GeV/c$^2$. Beam dump-like experiments, characterized by the possibility of extremely high luminosity at relatively high energies and the effective coverage of the production and decay acceptance, are the perfect option to generically explore the ``coupling frontier'' of the light FIPs. Several proposals for beam-dump detectors are currently being considered by CERN for implementation at the SPS ECN3 beam facility. In this we paper we analyse in depth how the characteristic geometric parameters of a beam dump experiment influence the signal yield. We apply an inclusive approach by considering the phenomenology of different types of FIPs. From the various production modes and kinematics, we demonstrate that the optimal layout that maximises the production and decay acceptance consists of a detector located on the beam-axis, at the shortest possible distance from the target defined by the systems required to suppress the beam-induced backgrounds.
Submission history
From: Maksym Ovchynnikov [view email][v1] Wed, 5 Apr 2023 15:36:44 UTC (968 KB)
[v2] Sat, 11 Nov 2023 13:54:27 UTC (866 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.