High Energy Physics - Phenomenology
[Submitted on 30 Mar 2023 (v1), last revised 5 Mar 2024 (this version, v3)]
Title:On the Relations between Fermion Masses and Isospin Couplings in the Microscopic Model
View PDF HTML (experimental)Abstract:Quark and lepton masses and mixings are considered in the framework of the microscopic model. The most general ansatz for the interactions among tetrons leads to a Hamiltonian $H_T$ involving Dzyaloshinskii-Moriya (DM), Heisenberg and torsional isospin forces. Diagonalization of the Hamiltonian provides for 24 eigenvalues which are identified as the quark and lepton masses. While the masses of the third and second family arise from DM and Heisenberg type of isospin interactions, light family masses are related to torsional interactions among tetrons. Neutrino masses turn out to be special in that they are given in terms of tiny isospin non-conserving DM, Heisenberg and torsional couplings. The approach not only leads to masses, but also allows to calculate the quark and lepton eigenstates, an issue, which is important for the determination of the CKM and PMNS mixing matrices. Compact expressions for the eigenfunctions of $H_T$ are given. The almost exact isospin conservation of the system dictates the form of the lepton states and makes them independent of all the couplings in $H_T$. Much in contrast, there is a strong dependence of the quark states on the coupling strengths, and a promising hierarchy between the quark families shows up.
Submission history
From: Bodo Lampe [view email][v1] Thu, 30 Mar 2023 19:25:26 UTC (39 KB)
[v2] Tue, 5 Sep 2023 08:25:15 UTC (41 KB)
[v3] Tue, 5 Mar 2024 10:10:39 UTC (71 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.