High Energy Physics - Phenomenology
[Submitted on 12 Apr 2023 (v1), last revised 18 Jul 2023 (this version, v2)]
Title:Detecting axion dark matter with Rydberg atoms via induced electric dipole transitions
View PDFAbstract:Long-standing efforts to detect axions are driven by two compelling prospects, naturally accounting for the absence of charge-conjugation and parity symmetry breaking in quantum chromodynamics, and for the elusive dark matter at ultralight mass scale. Many experiments use advanced cavity resonator setups to probe the magnetic-field-mediated conversion of axions to photons. Here, we show how to search for axion matter without relying on such a cavity setup, which opens a new path for the detection of ultralight axions, where cavity based setups are infeasible. When applied to Rydberg atoms, which feature particularly large transition dipole elements, this effect promises an outstanding sensitivity for detecting ultralight dark matter. Our estimates show that it can provide laboratory constraints in parameter space that so far had only been probed astrophysically, and cover new unprobed regions of parameter space. The Rydberg atomic gases offer a flexible and inexpensive experimental platform that can operate at room temperature. We project the sensitivity by quantizing the axion-modified Maxwell equations to accurately describe atoms and molecules as quantum sensors wherever axion dark matter is present.
Submission history
From: Georg Engelhardt [view email][v1] Wed, 12 Apr 2023 13:55:51 UTC (5,651 KB)
[v2] Tue, 18 Jul 2023 00:31:25 UTC (5,304 KB)
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.