High Energy Physics - Phenomenology
[Submitted on 12 Apr 2023 (v1), last revised 26 Jun 2023 (this version, v3)]
Title:Modular flavour symmetry and orbifolds
View PDFAbstract:We develop a bottom-up approach to flavour models which combine modular symmetry with orbifold constructions. We first consider a 6d orbifold $\mathbb{T}^2/\mathbb{Z}_N$, with a single torus defined by one complex coordinate $z$ and a single modulus field $\tau$, playing the role of a flavon transforming under a finite modular symmetry. We then consider 10d orbifolds with three factorizable tori, each defined by one complex coordinate $z_i$ and involving the three moduli fields $\tau_1, \tau_2, \tau_3$ transforming under three finite modular groups. Assuming supersymmetry, consistent with the holomorphicity requirement, we consider all 10d orbifolds of the form $(\mathbb{T}^2)^3/(\mathbb{Z}_N\times\mathbb{Z}_M)$, and list those which have fixed values of the moduli fields (up to an integer). The key advantage of such 10d orbifold models over 4d models is that the values of the moduli are not completely free but are constrained by geometry and symmetry. To illustrate the approach we discuss a 10d modular seesaw model with $S_4^3$ modular symmetry based on $(\mathbb{T}^2)^3/(\mathbb{Z}_4\times\mathbb{Z}_2)$ where $\tau_1=i,\ \tau_2=i+2$ are constrained by the orbifold, while $\tau_3=\omega$ is determined by imposing a further remnant $S_4$ flavour symmetry, leading to a highly predictive example in the class CSD$(n)$ with $n=1-\sqrt{6}$.
Submission history
From: Francisco J. de Anda [view email][v1] Wed, 12 Apr 2023 16:30:52 UTC (384 KB)
[v2] Fri, 14 Apr 2023 00:40:50 UTC (384 KB)
[v3] Mon, 26 Jun 2023 22:56:06 UTC (386 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.