High Energy Physics - Phenomenology
[Submitted on 12 May 2023]
Title:Forward-backward multiplicity and momentum correlations in pp and pPb collisions at the LHC energies
View PDFAbstract:Correlations and fluctuations between produced particles in an ultra-relativistic nuclear collision remain one of the successor to understand the basics of the particle production mechanism. More differential tools like Forward-Backward (FB) correlations between particles from two different phase-space further strengthened our cognizance. We have studied the strength of FB correlations in terms of charged particle multiplicity and summed transverse momentum for proton-proton ($pp$) and proton-lead ($pPb$) collisions at the centre-of-mass energies $\sqrt{s}$ = 13 TeV and $\sqrt{s_{\rm NN}}$ = 5.02 TeV respectively for the EPOS3 simulated events with hydrodynamical evolution of produced particles. Furthermore, the correlation strengths are separately obtained for the particles coming from the core and the corona. FB correlation strengths are examined as a function of psedorapidity gap ($\eta_{gap}$), psedorapidity window-width ($\delta\eta$), centre-of-mass energy ($\sqrt{s}$), minimum transverse momentum ($p_{Tmin}$) and different multiplicity classes following standard kinematical cuts used by the ALICE and the ATLAS experiments at the LHC for all three EPOS3 event samples. EPOS3 model shows a similar trend of FB multiplicity and momentum correlation strengths for both $pp$ \& $pPb$ systems, though the correlation strengths are found to be larger for $pPb$ system than $pp$ system. Moreover, $\delta\eta$-weighted average of FB correlation strengths as a function of different center-of-mass energies for $pp$ collisions delineates a tendency of saturation at very high energies.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.