High Energy Physics - Phenomenology
[Submitted on 12 May 2023]
Title:Dynamics of false vacuum bubbles with trapped particles
View PDFAbstract:We study the impact of the ambient fluid on the evolution of collapsing false vacuum bubbles by simulating the dynamics of a coupled bubble-particle system. A significant increase in the mass of the particles across the bubble wall leads to a buildup of those particles inside the false vacuum bubble. We show that the backreaction of the particles on the bubble slows or even reverses the collapse. Consequently, if the particles in the true vacuum become heavier than in the false vacuum, the particle-wall interactions always decrease the compactness that the false vacuum bubbles can reach making their collapse to black holes less likely.
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.