Astrophysics > High Energy Astrophysical Phenomena
[Submitted on 5 Jul 2023 (v1), last revised 12 Dec 2023 (this version, v2)]
Title:Searches for dark matter decay with ultra-high-energy neutrinos endure backgrounds
View PDF HTML (experimental)Abstract:Next-generation ultra-high-energy (UHE) neutrino telescopes, presently under planning, will have the potential to probe the decay of heavy dark matter (DM) into UHE neutrinos, with energies in excess of $10^7$~GeV. Yet, this potential may be deteriorated by the presence of an unknown background of UHE neutrinos, cosmogenic or from astrophysical sources, not of DM origin and seemingly large enough to obscure the DM signature. We show that leveraging the angular and energy distributions of detected events safeguards future searches for DM decay against such backgrounds. We focus on the radio-detection of UHE neutrinos in the planned IceCube-Gen2 neutrino telescope, which we model in state-of-the-art detail. We report promising prospects for the discovery potential of DM decay into UHE neutrinos, the measurement of DM mass and lifetime, and limits on the DM lifetime, despite the presence of a large background, without prior knowledge of its size and shape.
Submission history
From: Damiano Francesco Giuseppe Fiorillo [view email][v1] Wed, 5 Jul 2023 18:00:02 UTC (4,739 KB)
[v2] Tue, 12 Dec 2023 06:17:03 UTC (8,137 KB)
Current browse context:
astro-ph.HE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.