High Energy Physics - Phenomenology
[Submitted on 24 Aug 2023 (v1), last revised 5 Nov 2023 (this version, v2)]
Title:Phantom fluid cosmology: Impact of a phantom hidden sector on cosmological observables
View PDFAbstract:Phantom scalar theories are widely considered in cosmology, but rarely at the quantum level, where they give rise to negative-energy ghost particles. These cause decay of the vacuum into gravitons and photons, violating observational gamma-ray limits unless the ghosts are effective degrees of freedom with a cutoff $\Lambda$ at the few-MeV scale. We update the constraints on this scale, finding that $\Lambda \lesssim 19$ MeV. We further explore the possible coupling of ghosts to a light, possibly massless, hidden sector particle, such as a sterile neutrino. Vacuum decays can then cause the dark matter density of the universe to grow at late times. The combined phantom plus dark matter fluid has an effective equation of state $w < -1$, and functions as a new source of dark energy. We derive constraints from cosmological observables on the rate of vacuum decay into such a phantom fluid. We find a mild preference for the ghost model over the standard cosmological one, and a modest amelioration of the Hubble and $S_8$ tensions.
Submission history
From: Matteo Puel [view email][v1] Thu, 24 Aug 2023 18:00:01 UTC (7,042 KB)
[v2] Sun, 5 Nov 2023 10:51:05 UTC (7,051 KB)
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.