Nuclear Theory
[Submitted on 26 Aug 2023 (v1), last revised 10 Dec 2023 (this version, v2)]
Title:Establishing connection between neutron star properties and nuclear matter parameters through a comprehensive multivariate analysis
View PDF HTML (experimental)Abstract:We have attempted to mitigate the challenge of connecting the neutron star (NS) properties with the nuclear matter parameters that describe equations of state (EoSs). The efforts to correlate various neutron star properties with individual nuclear matter parameters have been inconclusive. A Principal Component Analysis is employed as a tool to uncover the connection between multiple nuclear matter parameters and the tidal deformability as well as the radius of neutron stars within the mass range of $1.2-1.8M_\odot$. The essential EOSs for neutron star matter at low densities have been derived using both uncorrelated uniform distributions and minimally constrained joint posterior distributions of nuclear matter parameters. For higher densities ($\rho > 0.32$fm$^{-3}$), the EOSs have been established through a suitable parameterization of the speed of sound, which consistently maintains causality and gradually approaches the conformal limit. Our analysis reveals that in order to account for over 90\% of the variability in NS properties, it is crucial to consider two or more principal components, emphasizing the significance of employing multivariate analysis. To explain the variability in tidal deformability needs a greater number of principal components compared to those for the radius at a given NS mass. The contributions from iso-vector nuclear matter parameters to the tidal deformability and radius of NS decrease by $\sim$ 25\% with the increase in mass of NS from 1.2$M_\odot$ to 1.8$M_\odot$.
Submission history
From: Naresh Kumar Patra [view email][v1] Sat, 26 Aug 2023 14:50:20 UTC (293 KB)
[v2] Sun, 10 Dec 2023 06:36:08 UTC (382 KB)
Current browse context:
nucl-th
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.