High Energy Physics - Lattice
[Submitted on 12 Sep 2023 (v1), last revised 4 Nov 2023 (this version, v2)]
Title:Application of the path optimization method to a discrete spin system
View PDFAbstract:The path optimization method, which is proposed to control the sign problem in quantum field theories with continuous degrees of freedom by machine learning, is applied to a spin model with discrete degrees of freedom. The path optimization method is applied by replacing the spins with dynamical variables via the Hubbard-Stratonovich transformation, and the sum with the integral. The one-dimensional (Lenz-)Ising model with a complex coupling constant is used as a laboratory for the sign problem in the spin model. The average phase factor is enhanced by the path optimization method, indicating that the method can weaken the sign problem. Our result reproduces the analytic values with controlled statistical errors.
Submission history
From: Kouji Kashiwa [view email][v1] Tue, 12 Sep 2023 07:34:08 UTC (183 KB)
[v2] Sat, 4 Nov 2023 05:24:43 UTC (183 KB)
Current browse context:
hep-lat
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.