Astrophysics > Cosmology and Nongalactic Astrophysics
[Submitted on 14 Sep 2023 (v1), last revised 29 May 2024 (this version, v2)]
Title:Complete analysis of the background and anisotropies of scalar-induced gravitational waves: primordial non-Gaussianity $f_{\mathrm{NL}}$ and $g_{\mathrm{NL}}$ considered
View PDF HTML (experimental)Abstract:Investigation of primordial non-Gaussianity holds immense importance in testing the inflation paradigm and shedding light on the physics of the early Universe. In this study, we conduct the complete analysis of scalar-induced gravitational waves (SIGWs) by incorporating the local-type non-Gaussianity $f_{\mathrm{NL}}$ and $g_{\mathrm{NL}}$. We develop Feynman-like diagrammatic technique and derive semi-analytic formulas for both the energy-density fraction spectrum and the angular power spectrum. For the energy-density fraction spectrum, we analyze all the relevant Feynman-like diagrams, determining their contributions to the spectrum in an order-by-order fashion. As for the angular power spectrum, our focus lies on the initial inhomogeneities, giving rise to anisotropies in SIGWs, that arise from the coupling between short- and long-wavelength modes due to primordial non-Gaussianity. Our analysis reveals that this spectrum exhibits a typical multipole dependence, characterized by $\tilde{C}_{\ell}\propto[\ell(\ell+1)]^{-1}$, which plays a crucial role in distinguishing between different sources of gravitational waves. Depending on model parameters, significant anisotropies can be achieved. We also show that the degeneracies in model parameters can be broken. The findings of our study underscore the angular power spectrum as a robust probe for investigating primordial non-Gaussianity and the physics of the early Universe. Moreover, our theoretical predictions can be tested using space-borne gravitational-wave detectors and pulsar timing arrays.
Submission history
From: Sai Wang [view email][v1] Thu, 14 Sep 2023 15:29:11 UTC (3,382 KB)
[v2] Wed, 29 May 2024 06:40:11 UTC (4,368 KB)
Current browse context:
astro-ph.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.