High Energy Physics - Phenomenology
[Submitted on 15 Sep 2023 (v1), last revised 6 Nov 2023 (this version, v2)]
Title:Generalized Ray Tracing for Axions in Astrophysical Plasmas
View PDFAbstract:Ray tracing plays a vital role in black hole imaging, modeling the emission mechanisms of pulsars, and deriving signatures from physics beyond the Standard Model. In this work we focus on one specific application of ray tracing, namely, predicting radio signals generated from the resonant conversion of axion dark matter in the strongly magnetized plasma surrounding neutron stars. The production and propagation of low-energy photons in these environments are sensitive to both the anisotropic response of the background plasma and curved spacetime; here, we employ a fully covariant framework capable of treating both effects. We implement this both via forward and backward ray tracing. In forward ray tracing, photons are sampled at the point of emission and propagated to infinity, whilst in the backward-tracing approach, photons are traced backwards from an image plane to the point of production. We explore various approximations adopted in prior work, quantifying the importance of gravity, plasma anisotropy, the neutron star mass and radius, and imposing the proper kinematic matching of the resonance. Finally, using a more realistic model for the charge distribution of magnetar magnetospheres, we revisit the sensitivity of current and future radio and sub-mm telescopes to spectral lines emanating from the Galactic Center Magnetar, showing such observations may extend sensitivity to axion masses $m_a \sim \mathcal{O}({\rm few}) \times 10^{-3}$ eV, potentially even probing parameter space of the QCD axion.
Submission history
From: Samuel Witte [view email][v1] Fri, 15 Sep 2023 18:00:00 UTC (6,767 KB)
[v2] Mon, 6 Nov 2023 10:22:45 UTC (6,592 KB)
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.