Nuclear Theory
[Submitted on 12 Dec 2023]
Title:Probing nuclear structure at the Electron-Ion Collider and in ultra-peripheral nuclear collisions
View PDF HTML (experimental)Abstract:Within the Color Glass Condensate framework, we demonstrate that exclusive vector meson production at high energy is sensitive to the geometric deformation of the target nucleus and subnucleon scale fluctuations. Deformation of the nucleus enhances the incoherent cross section in the small $|t|$ region. Subnucleon scale fluctuations increase the incoherent cross section in the large $|t|$ region. In ultra-peripheral collisions (UPCs), larger deformation leads to a wider distribution of the minimal impact parameter $B_{min}$ required to produce a UPC. This, together with larger incoherent cross sections for larger deformation, results in smaller extracted radii. Our results demonstrate great potential for future studies of nuclear structure in UPCs and electron-ion collisions.
Current browse context:
nucl-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.