Quantitative Biology > Quantitative Methods
[Submitted on 26 Feb 2024 (v1), last revised 18 Nov 2024 (this version, v3)]
Title:Multicellular simulations with shape and volume constraints using optimal transport
View PDF HTML (experimental)Abstract:Many living and physical systems such as cell aggregates, tissues or bacterial colonies behave as unconventional systems of particles that are strongly constrained by volume exclusion and shape interactions. Understanding how these constraints lead to macroscopic self-organized structures is a fundamental question in e.g. developmental biology. To this end, various types of computational models have been developed. Here, we introduce a new framework based on optimal transport theory to model particle systems with arbitrary dynamical shapes and deformability properties. Our method builds upon the pioneering work of Brenier on incompressible fluids and its recent applications to materials science. It lets us specify the shapes and volumes of individual cells and supports a wide range of interaction mechanisms, while automatically taking care of the volume exclusion constraint at an affordable numerical cost. We showcase the versatility of this approach by reproducing several classical systems in computational biology. Our Python code is freely available at \url{this https URL}.
Submission history
From: Antoine Diez [view email][v1] Mon, 26 Feb 2024 23:53:18 UTC (7,512 KB)
[v2] Fri, 26 Jul 2024 01:34:50 UTC (26,873 KB)
[v3] Mon, 18 Nov 2024 09:14:50 UTC (26,194 KB)
Current browse context:
q-bio.QM
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.