Statistics > Methodology
[Submitted on 22 May 2024 (v1), last revised 27 Nov 2024 (this version, v2)]
Title:Extending Kernel Testing To General Designs
View PDF HTML (experimental)Abstract:Kernel-based testing has revolutionized the field of non-parametric tests through the embedding of distributions in an RKHS. This strategy has proven to be powerful and flexible, yet its applicability has been limited to the standard two-sample case, while practical situations often involve more complex experimental designs. To extend kernel testing to any design, we propose a linear model in the RKHS that allows for the decomposition of mean embeddings into additive functional effects. We then introduce a truncated kernel Hotelling-Lawley statistic to test the effects of the model, demonstrating that its asymptotic distribution is chi-square, which remains valid with its Nystrom approximation. We discuss a homoscedasticity assumption that, although absent in the standard two-sample case, is necessary for general designs. Finally, we illustrate our framework using a single-cell RNA sequencing dataset and provide kernel-based generalizations of classical diagnostic and exploration tools to broaden the scope of kernel testing in any experimental design.
Submission history
From: Anthony Ozier-Lafontaine [view email][v1] Wed, 22 May 2024 16:24:01 UTC (240 KB)
[v2] Wed, 27 Nov 2024 12:07:04 UTC (285 KB)
Current browse context:
stat.ME
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.